On randomized greedy matchings
نویسندگان
چکیده
We analyze a randomized greedy matching algorithm (RGA) aimed at producing a matching with a large number of edges in a given weighted graph. RGA was first introduced and studied by Dyer and Frieze in [3] for unweighted graphs. In the weighted version, at each step a new edge is chosen from the remaining graph with probability proportional to its weight, and is added to the matching. The two vertices of the chosen edge are removed, and the step is repeated until there are no edges in the remaining graph. We analyze the expected size μ(G) of the number of edges in the output matching produced by RGA, when RGA is repeatedly applied to the same graph G. Let r(G) = μ(G)/m(G), where m(G) is the maximum number of edges in a matching in G.
منابع مشابه
Randomized Greedy Algorithms for Independent Sets and Matchings in Regular Graphs: Exact Results and Finite Girth Corrections
We derive new results for the performance of a simple greedy algorithm for finding large independent sets and matchings in constant degree regular graphs. We show that for r-regular graphs with n nodes and girth at least g, the algorithm finds an independent set of expected cardinality f(r)n−O ( (r−1) g2 g 2 ! n ) , where f(r) is a function which we explicitly compute. A similar result is estab...
متن کاملA GPU Algorithm for Greedy Graph Matching
Greedy graph matching provides us with a fast way to coarsen a graph during graph partitioning. Direct algorithms on the CPU which perform such greedy matchings are simple and fast, but offer few handholds for parallelisation. To remedy this, we introduce a fine-grained shared-memory parallel algorithm for maximal greedy matching, together with an implementation on the GPU, which is faster (spe...
متن کاملFitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure
The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...
متن کاملAbstract—alexey Pokrovskiy
Alexey Pokrovskiy Aharoni and Berger conjectured [1] that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. When the matchings have size ...
متن کاملGreedy Morse matchings and discrete smoothness
Discrete Morse theory emerged as an essential tool for computational geometry and topology. Its core structures are discrete gradient fields, defined as acyclic matchings on a complex C, from which topological and geometrical information of C can be efficiently computed, in particular its homotopy, homology, or Morse-Smale decomposition. On the geometrical side, given a function f sampled on C,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 10 شماره
صفحات -
تاریخ انتشار 1997